Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 522
Filtrar
1.
Nucleic Acids Res ; 50(22): 12790-12808, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36533444

RESUMO

In cyanobacteria DNA supercoiling varies over the diurnal cycle and is integrated with temporal programs of transcription and replication. We manipulated DNA supercoiling in Synechocystis sp. PCC 6803 by CRISPRi-based knockdown of gyrase subunits and overexpression of topoisomerase I (TopoI). Cell division was blocked but cell growth continued in all strains. The small endogenous plasmids were only transiently relaxed, then became strongly supercoiled in the TopoI overexpression strain. Transcript abundances showed a pronounced 5'/3' gradient along transcription units, incl. the rRNA genes, in the gyrase knockdown strains. These observations are consistent with the basic tenets of the homeostasis and twin-domain models of supercoiling in bacteria. TopoI induction initially led to downregulation of G+C-rich and upregulation of A+T-rich genes. The transcriptional response quickly bifurcated into six groups which overlap with diurnally co-expressed gene groups. Each group shows distinct deviations from a common core promoter structure, where helically phased A-tracts are in phase with the transcription start site. Together, our data show that major co-expression groups (regulons) in Synechocystis all respond differentially to DNA supercoiling, and suggest to re-evaluate the long-standing question of the role of A-tracts in bacterial promoters.


Assuntos
DNA Topoisomerases , Regiões Promotoras Genéticas , Synechocystis , Divisão Celular/genética , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Synechocystis/enzimologia , Synechocystis/genética , Ativação Transcricional , DNA Topoisomerases/genética , DNA Topoisomerases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Biomolecules ; 12(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36551223

RESUMO

Fatty acid desaturases (FADs) play important roles in various metabolic and adaptive pathways in all living organisms. They represent a superfamily of oxygenases that introduce double bonds into the acyl chains of fatty acids (FAs). These enzymes are highly specific to the length of the carbon chain, position of double bonds formation, etc. The modes by which FADs "count" the position of the double bond formation may differ. In cyanobacteria, the first double bond is formed between 9th and 10th carbons (position Δ9), counting from the carboxylic end of an FA. Other FADs that produce polyunsaturated FAs may introduce double bonds counting from the carboxyl (Δ) or methyl (ω) terminus, or from a pre-existing double bond towards carboxyl or methyl terminus of an FA chain. Here, we expressed the desD gene for the Δ6-FAD from Synechocystis sp. PCC 6803 in Synechococcus elongatus PCC 7942 (which is capable of synthesizing only monoenoic FAs desaturated mainly at position Δ9) and observed the appearance of unusual monoenoic FAs desaturated at position Δ6, as well as Δ6,9 dienoic FAs. Exogenously added cis-10-heptadecenoic acid (17:1Δ10) was converted into cis-6,10-heptadecadienoic (17:2Δ6,10). These data demonstrate the ability of Δ6-FAD to introduce the first double bond into the unsaturated substrates and suggests that it "counts" from the carboxyl end, irrespective of the absence or presence of a previous double bond in an FA chain.


Assuntos
Ácidos Graxos Insaturados , Linoleoil-CoA Desaturase , Synechocystis , Ácidos Graxos Insaturados/metabolismo , Linoleoil-CoA Desaturase/química , Linoleoil-CoA Desaturase/genética , Synechocystis/enzimologia
3.
BMC Mol Cell Biol ; 23(1): 27, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794554

RESUMO

Synechocystis histidine kinase, Sll0474: Hik28, a signal protein in a two-component signal transduction system, plays a critical role in responding to a decrease in growth temperature and is also involved in nitrogen metabolism. In the present study, under combined stress from non-optimal growth temperature and nitrogen depletion, a comparative proteomic analysis of the wild type (WT) and a deletion mutant (MT) of Synechocystis histidine kinase, Sll0474: Hik28, in a two-component signal transduction system identified the specific groups of ABC transporters that were Hik28-dependent, e.g., the iron transporter, and Hik28-independent, e.g., the phosphate transporter. The iron transporter, AfuA, was found to be upregulated only in the WT strain grown under the combined stress of high temperature and nitrogen depletion. Whereas, the expression level of the phosphate transporter, PstS, was increased in both the WT and MT strains. Moreover, the location in the genome of the genes encoding Hik28 and ABC transporters in Synechocystis sp. PCC6803 were analyzed in parallel with the comparative proteomic data. The results suggested the regulation of the ABC transporters by the gene in a two-component system located in an adjacent location in the genome.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Histidina Quinase , Synechocystis , Transportadores de Cassetes de Ligação de ATP/metabolismo , Histidina Quinase/metabolismo , Ferro/metabolismo , Nitrogênio/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Proteoma/metabolismo , Proteômica , Synechocystis/enzimologia , Synechocystis/genética , Synechocystis/metabolismo
4.
J Biol Chem ; 298(5): 101925, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35413287

RESUMO

Conditional proteolytic degradation is an irreversible and highly regulated process that fulfills crucial regulatory functions in all organisms. As proteolytic targets tend to be critical metabolic or regulatory proteins, substrates are targeted for degradation only under appropriate conditions through the recognition of an amino acid sequence referred to as a "degron". DEAD-box RNA helicases mediate all aspects of RNA metabolism, contributing to cellular fitness. However, the mechanism by which abiotic-stress modulation of protein stability regulates bacterial helicase abundance has not been extensively characterized. Here, we provide in vivo evidence that proteolytic degradation of the cyanobacterial DEAD-box RNA helicase CrhR is conditional, being initiated by a temperature upshift from 20 to 30 °C in the model cyanobacterium, Synechocystis sp. PCC 6803. We show degradation requires a unique, highly conserved, inherently bipartite degron located in the C-terminal extension found only in CrhR-related RNA helicases in the phylum Cyanobacteria. However, although necessary, the degron is not sufficient for proteolysis, as disruption of RNA helicase activity and/or translation inhibits degradation. These results suggest a positive feedback mechanism involving a role for CrhR in expression of a crucial factor required for degradation. Furthermore, AlphaFold structural prediction indicated the C-terminal extension is a homodimerization domain with homology to other bacterial RNA helicases, and mass photometry data confirmed that CrhR exists as a dimer in solution at 22 °C. These structural data suggest a model wherein the CrhR degron is occluded at the dimerization interface but could be exposed if dimerization was disrupted by nonpermissive conditions.


Assuntos
RNA Helicases DEAD-box , Synechocystis , RNA Helicases DEAD-box/metabolismo , Proteólise , RNA Bacteriano/metabolismo , Synechocystis/enzimologia , Synechocystis/genética
5.
Nucleic Acids Res ; 49(22): 13075-13091, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34871439

RESUMO

Ribonucleases are crucial enzymes in RNA metabolism and post-transcriptional regulatory processes in bacteria. Cyanobacteria encode the two essential ribonucleases RNase E and RNase J. Cyanobacterial RNase E is shorter than homologues in other groups of bacteria and lacks both the chloroplast-specific N-terminal extension as well as the C-terminal domain typical for RNase E of enterobacteria. In order to investigate the function of RNase E in the model cyanobacterium Synechocystis sp. PCC 6803, we engineered a temperature-sensitive RNase E mutant by introducing two site-specific mutations, I65F and the spontaneously occurred V94A. This enabled us to perform RNA-seq after the transient inactivation of RNase E by a temperature shift (TIER-seq) and to map 1472 RNase-E-dependent cleavage sites. We inferred a dominating cleavage signature consisting of an adenine at the -3 and a uridine at the +2 position within a single-stranded segment of the RNA. The data identified mRNAs likely regulated jointly by RNase E and an sRNA and potential 3' end-derived sRNAs. Our findings substantiate the pivotal role of RNase E in post-transcriptional regulation and suggest the redundant or concerted action of RNase E and RNase J in cyanobacteria.


Assuntos
Proteínas de Bactérias/genética , Cianobactérias/genética , Endorribonucleases/genética , Perfilação da Expressão Gênica/métodos , Transcriptoma , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Cianobactérias/enzimologia , Endorribonucleases/metabolismo , Hidrólise , Mutação Puntual , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA-Seq/métodos , Homologia de Sequência de Aminoácidos , Espectrofotometria/métodos , Especificidade por Substrato , Synechocystis/enzimologia , Synechocystis/genética
6.
Plant Physiol ; 187(3): 1325-1340, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618018

RESUMO

Thioredoxins (Trxs) are disulfide oxidoreductases that regulate many biological processes. The m-type thioredoxin (TrxA) is the only Trx present in all oxygenic photosynthetic organisms. Extensive biochemical and proteomic analyses have identified many TrxA target proteins in different photosynthetic organisms. However, the precise function of this essential protein in vivo is still poorly known. In this study, we generated a conditional Synechocystis sp. PCC 6803 mutant strain (STXA2) using an on-off promoter that is able to survive with only 2% of the TrxA level of the wild-type (WT) strain. STXA2 characterization revealed that TrxA depletion results in growth arrest and pronounced impairment of photosynthesis and the Calvin-Benson-Bassham (CBB) cycle. Analysis of the in vivo redox state of the bifunctional enzyme fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase showed higher levels of oxidation that affected enzyme activity in STXA2. This result implies that TrxA-mediated redox regulation of the CBB cycle is conserved in both cyanobacteria and chloroplasts, although the targets have different evolutionary origins. The STXA2 strain also accumulated more reactive oxygen species and was more sensitive to oxidative stress than the WT. Analysis of the in vivo redox state of 2-Cys peroxiredoxin revealed full oxidation, corresponding with TrxA depletion. Overall, these results indicate that depletion of TrxA in STXA2 greatly alters the cellular redox state, interfering with essential processes such as photosynthetic machinery operativity, carbon assimilation, and oxidative stress response. The TrxA regulatory role appears to be conserved along the evolution of oxygenic photosynthetic organisms.


Assuntos
Proteínas de Bactérias/metabolismo , Ciclo do Carbono , Tiorredoxinas de Cloroplastos/metabolismo , Estresse Oxidativo , Fotossíntese , Synechocystis/metabolismo , Synechocystis/enzimologia
7.
J Am Chem Soc ; 143(36): 14601-14612, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34472838

RESUMO

Photosystem I (PSI), found in all oxygenic photosynthetic organisms, uses solar energy to drive electron transport with nearly 100% quantum efficiency, thanks to fast energy transfer among antenna chlorophylls and charge separation in the reaction center. There is no complete consensus regarding the kinetics of the elementary steps involved in the overall trapping, especially the rate of primary charge separation. In this work, we employed two-dimensional coherent electronic spectroscopy to follow the dynamics of energy and electron transfer in a monomeric PSI complex from Synechocystis PCC 6803, containing only subunits A-E, K, and M, at 77 K. We also determined the structure of the complex to 4.3 Å resolution by cryoelectron microscopy with refinements to 2.5 Å. We applied structure-based modeling using a combined Redfield-Förster theory to compute the excitation dynamics. The absorptive 2D electronic spectra revealed fast excitonic/vibronic relaxation on time scales of 50-100 fs from the high-energy side of the absorption spectrum. Antenna excitations were funneled within 1 ps to a small pool of chlorophylls absorbing around 687 nm, thereafter decaying with 4-20 ps lifetimes, independently of excitation wavelength. Redfield-Förster energy transfer computations showed that the kinetics is limited by transfer from these red-shifted pigments. The rate of primary charge separation, upon direct excitation of the reaction center, was determined to be 1.2-1.5 ps-1. This result implies activationless electron transfer in PSI.


Assuntos
Proteínas de Bactérias/química , Complexo de Proteína do Fotossistema I/química , Elétrons , Transferência de Energia , Cinética , Eletricidade Estática , Synechocystis/enzimologia
8.
Nat Commun ; 12(1): 5150, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446715

RESUMO

Recent studies have revealed the prevalence and biological significance of guanidine metabolism in nature. However, the metabolic pathways used by microbes to degrade guanidine or mitigate its toxicity have not been widely studied. Here, via comparative proteomics and subsequent experimental validation, we demonstrate that Sll1077, previously annotated as an agmatinase enzyme in the model cyanobacterium Synechocystis sp. PCC 6803, is more likely a guanidinase as it can break down guanidine rather than agmatine into urea and ammonium. The model cyanobacterium Synechococcus elongatus PCC 7942 strain engineered to express the bacterial ethylene-forming enzyme (EFE) exhibits unstable ethylene production due to toxicity and genomic instability induced by accumulation of the EFE-byproduct guanidine. Co-expression of EFE and Sll1077 significantly enhances genomic stability and enables the resulting strain to achieve sustained high-level ethylene production. These findings expand our knowledge of natural guanidine degradation pathways and demonstrate their biotechnological application to support ethylene bioproduction.


Assuntos
Proteínas de Bactérias/metabolismo , Etilenos/biossíntese , Instabilidade Genômica , Guanidina/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Synechocystis/enzimologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Synechocystis/genética
9.
Sci Rep ; 11(1): 17131, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429477

RESUMO

A unicellular cyanobacterium Synechocystis sp. PCC 6803 possesses a unique tricarboxylic acid (TCA) cycle, wherein the intracellular citrate levels are approximately 1.5-10 times higher than the levels of other TCA cycle metabolite. Aconitase catalyses the reversible isomerisation of citrate and isocitrate. Herein, we biochemically analysed Synechocystis sp. PCC 6803 aconitase (SyAcnB), using citrate and isocitrate as the substrates. We observed that the activity of SyAcnB for citrate was highest at pH 7.7 and 45 °C and for isocitrate at pH 8.0 and 53 °C. The Km value of SyAcnB for citrate was higher than that for isocitrate under the same conditions. The Km value of SyAcnB for isocitrate was 3.6-fold higher than the reported Km values of isocitrate dehydrogenase for isocitrate. Therefore, we suggest that citrate accumulation depends on the enzyme kinetics of SyAcnB, and 2-oxoglutarate production depends on the chemical equilibrium in this cyanobacterium.


Assuntos
Aconitato Hidratase/metabolismo , Proteínas de Bactérias/metabolismo , Ácido Cítrico/metabolismo , Synechocystis/enzimologia , Ácido Cítrico/análogos & derivados , Concentração de Íons de Hidrogênio , Isomerismo , Cinética , Especificidade por Substrato , Synechocystis/metabolismo , Temperatura
10.
Appl Biochem Biotechnol ; 193(11): 3651-3671, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34347252

RESUMO

Finding reliable cheap sources for producing chemicals and materials is always challenging. During recent decades, photosynthetic organisms such as cyanobacteria, which used CO2 as a carbon source for making products, have attracted a great deal of attention. Among cyanobacteria, Synechocystis sp. PCC 6803 has been considered as a model strain and has some desirable features that make it suitable for use as an industrial strain. Pyruvate kinase (PK) catalyzes the transformation of phosphoenolpyruvate (PEP) to pyruvate in the last step of glycolysis that is an essential enzyme to produce adenosine triphosphate (ATP) in all organisms. Therefore, it plays a critical role in regulating cell metabolism. However, active and allosteric sites of PK and allosteric mechanisms governing PK activity are poorly understood in many bacteria. This study was aimed to provide more insight into PKs of Synechocystis sp. PCC 6803, using in silico methods. The results indicated that predicted structures of PKs from Synechocystis sp. PCC 6803 are reliable and can be considered for further studies. Molecular docking studies suggested that for predicted structures of sll0587 and sll1275, respectively, there are three and two possible active or allosteric sites. Furthermore, molecular interaction analysis of modeled structures proposes that sll0587 is strongly inhibited by ATP and when ATP concentration is low, this isoenzyme is active.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Simulação por Computador , Piruvato Quinase/química , Synechocystis/enzimologia , Especificidade por Substrato
11.
FEBS Lett ; 595(14): 1876-1885, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34060653

RESUMO

IM30, the inner membrane-associated protein of 30 kDa, is conserved in cyanobacteria and chloroplasts. Although its exact physiological function is still mysterious, IM30 is clearly essential for thylakoid membrane biogenesis and/or dynamics. Recently, a cryptic IM30 GTPase activity has been reported, albeit thus far no physiological function has been attributed to this. Yet, it is still possible that GTP binding/hydrolysis affects formation of the prototypical large homo-oligomeric IM30 ring and rod structures. Here, we show that the Synechocystis sp. PCC 6803 IM30 protein in fact is an NTPase that hydrolyzes GTP and ATP, but not CTP or UTP, with about identical rates. While IM30 forms large oligomeric ring complexes, nucleotide binding and/or hydrolysis are clearly not required for ring formation.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Membrana/metabolismo , Nucleosídeo-Trifosfatase/metabolismo , Synechocystis/enzimologia , Tilacoides/enzimologia , Trifosfato de Adenosina/química , Proteínas de Bactérias/genética , Clonagem Molecular , Ensaios Enzimáticos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Guanosina Trifosfato/química , Hidrólise , Cinética , Proteínas de Membrana/genética , Microscopia Eletrônica , Nucleosídeo-Trifosfatase/genética , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Synechocystis/genética , Synechocystis/ultraestrutura , Tilacoides/genética , Tilacoides/ultraestrutura
12.
Microbes Environ ; 36(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34039816

RESUMO

We investigated variations in cell growth and ATP Sulfurylase (ATPS) activity when two cyanobacterial strains-Synechocystis sp. PCC6803 and Synechococcus sp. WH7803-were grown in conventional media, and media with low ammonium, low sulfate and a high CO2/low O2 atmosphere. In both organisms, a transition and adaptation to the reconstructed environmental media resulted in a decrease in ATPS activity. This variation appears to be decoupled from growth rate, suggesting the enzyme is not rate-limiting in S assimilation and raising questions about the role of ATPS redox regulation in cell physiology and throughout Earth history.


Assuntos
Proteínas de Bactérias/metabolismo , Sulfato Adenililtransferase/metabolismo , Synechococcus/enzimologia , Synechococcus/crescimento & desenvolvimento , Synechocystis/enzimologia , Synechocystis/crescimento & desenvolvimento , Compostos de Amônio/metabolismo , Proteínas de Bactérias/genética , Sulfato Adenililtransferase/genética , Sulfatos/metabolismo , Synechococcus/genética , Synechocystis/genética
13.
Plant Sci ; 304: 110798, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33568297

RESUMO

Cyanobacterial type I NADH dehydrogenase (NDH-1) is involved in various bioenergetic reactions including respiration, cyclic electron transport (CET), and CO2 uptake. The role of NDH-1 is usually minor under normal growth conditions and becomes important under stress conditions. However, in our previous study, flux balance analysis (FBA) simulation predicted that the drive of NDH-1 as CET pathway with a photosystem (PS) I/PSII excitation ratio around 1.0 contributes to achieving an optimal specific growth rate. In this study, to experimentally elucidate the predicted functions of NDH-1, first, we measured the PSI/PSII excitation ratios of Synechocystis sp. PCC 6803 grown under four types of spectral light conditions. The specific growth rate was the highest and PSI/PSII excitation ratio was with 0.88 under the single-peak light at 630 nm (Red1). Considering this measured excitation ratios, FBA simulation predicted that NDH-1-dependent electron transport was the major pathway under Red1. Moreover, in actual culture, an NDH-1 deletion strain had slower growth rate than that of wild type only under Red1 light condition. Therefore, we experimentally demonstrated that NDH-1 plays an important role under optimal light conditions such as Red1 light, where Synechocystis exhibits the highest specific growth rate and PSI/PSII excitation ratio of around 1.0.


Assuntos
Proteínas de Bactérias/fisiologia , Complexo I de Transporte de Elétrons/fisiologia , Ficobilissomas/farmacologia , Synechocystis/enzimologia , Proteínas de Bactérias/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Luz , Consumo de Oxigênio , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/efeitos dos fármacos , Synechocystis/crescimento & desenvolvimento , Synechocystis/efeitos da radiação
14.
Biochem Biophys Res Commun ; 540: 16-21, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33429195

RESUMO

Polyphosphate, which is ubiquitous in cells in nature, is involved in a myriad of cellular functions, and has been recently focused on its metabolism related with microbial acclimation to phosphorus-source fluctuation. In view of the ecological importance of cyanobacteria as the primary producers, this study investigated the responsibility of polyphosphate metabolism for cellular acclimation to phosphorus starvation in a cyanobacterium, Synechocystis sp. PCC 6803, with the use of a disruptant (Δppx) as to the gene of exopolyphosphatase that is responsible for polyphosphate degradation. Δppx was similar to the wild type in the cellular content of polyphosphate to show no defect in cell growth under phosphorus-replete conditions. However, under phosphorus-starved conditions, Δppx cells were defective in a phosphorus-starvation dependent decrease of polyphosphate to show deleterious phenotypes as to their survival and the stabilization of the photosystem complexes. These results demonstrated some crucial role of exopolyphosphatase to degrade polyP in the acclimation of cyanobacterial cells to phosphorus-starved conditions. Besides, it was found that ppx expression is induced in Synechocystis cells in response to phosphorus starvation through the action of the two-component system, SphS and SphR, in the phosphate regulon. The information will be a foundation for a fuller understanding of the process of cyanobacterial acclimation to phosphorus fluctuation.


Assuntos
Hidrolases Anidrido Ácido/genética , Fósforo/deficiência , Fósforo/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Aclimatação , Proteínas de Bactérias/genética , Viabilidade Microbiana , Polifosfatos/metabolismo , Regulon , Synechocystis/citologia , Synechocystis/enzimologia
15.
Appl Biochem Biotechnol ; 193(3): 687-716, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33159456

RESUMO

Cyanobacterium Synechocystis sp. PCC 6803, a popular model organism for researches in photosynthesis and biofuel production, contains plant-like photosynthetic machineries which significantly contribute to global carbon fixation. There are 12 eukaryotic-type Ser/Thr kinases (SpkA-L) and 49 His kinases (Hik1-49) of two-component systems in the genome of Synechocystis sp. PCC 6803. They are the key regulators in sensing and transmitting stimuli including light- and glucose-mediate signal transduction. Proteomic studies were able to identify all the kinases. The majority of kinases no matter whether they have a predicted transmembrane domain were identified in the membrane fractions. Six Ser/Thr kinases (SpkA-D, F and G) and ten His kinases (Hik4, 12, 14, 21, 26-27, 29, 36, 43, and 46) were identified to have one or more of the three types of post-translational modifications: phosphorylation, acetylation, and thiol oxidation. Interestingly, SpkG has the phosphorylatable threonine residue that was aligned with the phosphorylated threonine residue in the activation loop of human CDK7, demonstrating conserved phosphorylation between cyanobacterial and human kinases. Transcriptomics and proteomics revealed differential expression of the kinases in heterotrophic and photoheterotrophic compared with photoautotrophic conditions, indicating their roles in regulating the growth modes of cyanobacteria. In summary, this review focuses on the discussions on post-transcriptional modifications, transcriptomic, and proteomic studies of Ser/Thr and His kinases. This together with our published review in 2019 present a complete story of an overview of sequences, domain architectures, and biochemical and physiological functions of cyanobacterial kinases with adequate details in the context of high throughput systems. We also emphasize the importance of discovering upstream molecules and substrates to understand the exact functions of the kinases in vivo. As an attempt, a model is proposed in which Hik31, His33, Sll1334, and IcfG are hypothesized to be critical for switching between autotrophic and heterotrophic modes based on the results from the phenotypes of the gene knockout strains combined with their post-translational modifications, and gene expression profiles.


Assuntos
Proteínas de Bactérias/metabolismo , Histidina Quinase/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Synechocystis/enzimologia , Fosforilação
16.
Environ Microbiol ; 23(2): 559-571, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908125

RESUMO

Protein quality control pathways require AAA+ proteases, such as Clp and Lon. Lon protease maintains UmuD, an important component of the error-prone DNA repair polymerase (Pol V), at very low levels in E. coli. Most members of the phylum Cyanobacteria lack Lon (including the model cyanobacterium, Synechocystis sp. PCC6803), so maintenance of UmuD at low levels must employ different proteases. We demonstrate that the first 19 residues from the N-terminus of UmuD (Sug1-19 ) fused to a reporter protein are adequate to trigger complete proteolysis and that mutation of a single leucine residue (L6) to aspartic acid inhibits proteolysis. This process appears to follow the N-end rule and is mediated by ClpA/P protease and the ClpS adaptor. Additionally, mutations of arginine residues in the Sug1-19 tag suggest that the ClpX/P pathway also plays a role in proteolysis. We propose that there is a dual degron at the N-terminus of the UmuD protein in Synechocystis sp. PCC6803, which is distinct from the degron required for degradation of UmuD in E. coli. The use of two proteolysis pathways to tune levels of UmuD might reflect how a photosynthetic organism responds to multiple environmental stressors.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Synechocystis/enzimologia , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Reparo do DNA , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Mutação , Proteólise , Synechocystis/química , Synechocystis/genética , Synechocystis/metabolismo
17.
Angew Chem Int Ed Engl ; 60(7): 3679-3684, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33141478

RESUMO

A mirror-image strategy, that is, symmetry analysis of the substrate-binding pocket, was applied to identify two key amino acid residues W170 and V198 that possibly modulate the enantiopreference of a nitrilase from Synechocystis sp. PCC6803 towards 3-isobutyl glutaronitrile (1 a). Exchange of these two residues resulted in the enantiopreference inversion (S, 90 % ee to R, 47 % ee). By further reshaping the substrate-binding pocket via routine site-saturation and combinatorial mutagenesis, variant E8 with higher activity and stereoselectivity (99 % ee, R) was obtained. The mutant enzyme was applied in the preparation of optically pure (R)-3-isobutyl-4-cyanobutanoic acid ((R)-2 a) and showed similar stereopreference inversion towards a series of 3-substituted glutaronitriles. This study may offer a general strategy to switch the stereopreference of other nitrilases and other enzymes toward the desymmetric reactions of prochiral substrates with two identical reactive functional groups.


Assuntos
Aminoidrolases/metabolismo , Nitrilas/metabolismo , Aminoidrolases/genética , Sítios de Ligação , Biocatálise , Hidrólise , Estrutura Molecular , Nitrilas/química , Estereoisomerismo , Synechocystis/enzimologia
18.
Biochemistry ; 59(51): 4864-4872, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33319991

RESUMO

The S3 state is the last semi-stable state in the water splitting reaction that is catalyzed by the Mn4O5Ca cluster that makes up the oxygen-evolving complex (OEC) of photosystem II (PSII). Recent high-field/frequency (95 GHz) electron paramagnetic resonance (EPR) studies of PSII isolated from the thermophilic cyanobacterium Thermosynechococcus elongatus have found broadened signals induced by chemical modification of the S3 state. These signals are ascribed to an S3 form that contains a five-coordinate MnIV center bridged to a cuboidal MnIV3O4Ca unit. High-resolution X-ray free-electron laser studies of the S3 state have observed the OEC with all-octahedrally coordinated MnIV in what is described as an open cuboid-like cluster. No five-coordinate MnIV centers have been reported in these S3 state structures. Here, we report high-field/frequency (130 GHz) pulse EPR of the S3 state in Synechocystis sp. PCC 6803 PSII as isolated in the presence of glycerol. The S3 state of PSII from Synechocystis exhibits multiple broadened forms (≈69% of the total signal) similar to those seen in the chemically modified S3 centers from T. elongatus. Field-dependent ELDOR-detected nuclear magnetic resonance resolves two classes of 55Mn nuclear spin transitions: one class with small hyperfine couplings (|A| ≈ 1-7 MHz) and another with larger hyperfine couplings (|A| ≈ 100 MHz). These results are consistent with an all-MnIV4 open cubane structure of the S3 state and suggest that the broadened S3 signals arise from a perturbation of Mn4A and/or Mn3B, possibly induced by the presence of glycerol in the as-isolated Synechocystis PSII.


Assuntos
Complexo de Proteína do Fotossistema II/química , Synechocystis/enzimologia , Crioprotetores/química , Espectroscopia de Ressonância de Spin Eletrônica , Glicerol/química , Manganês/química , Oxirredução , Oxigênio/química
19.
Sci Rep ; 10(1): 22018, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328526

RESUMO

Phosphoketolase (PKET) pathway is predominant in cyanobacteria (around 98%) but current opinion is that it is virtually inactive under autotrophic ambient CO2 condition (AC-auto). This creates an evolutionary paradox due to the existence of PKET pathway in obligatory photoautotrophs. We aim to answer the paradox with the aid of bioinformatic analysis along with metabolic, transcriptomic, fluxomic and mutant data integrated into a multi-level kinetic model. We discussed the problems linked to neglected isozyme, pket2 (sll0529) and inconsistencies towards the explanation of residual flux via PKET pathway in the case of silenced pket1 (slr0453) in Synechocystis sp. PCC 6803. Our in silico analysis showed: (1) 17% flux reduction via RuBisCO for Δpket1 under AC-auto, (2) 11.2-14.3% growth decrease for Δpket2 in turbulent AC-auto, and (3) flux via PKET pathway reaching up to 252% of the flux via phosphoglycerate mutase under AC-auto. All results imply that PKET pathway plays a crucial role under AC-auto by mitigating the decarboxylation occurring in OPP pathway and conversion of pyruvate to acetyl CoA linked to EMP glycolysis under the carbon scarce environment. Finally, our model predicted that PKETs have low affinity to S7P as a substrate.


Assuntos
Aldeído Liases/metabolismo , Redes e Vias Metabólicas , Synechocystis/enzimologia , Carbono/metabolismo , Simulação por Computador , Regulação Enzimológica da Expressão Gênica , Inativação Gênica , Análise do Fluxo Metabólico , Filogenia , Especificidade por Substrato , Fosfatos Açúcares/metabolismo , Synechocystis/genética
20.
Genomics Proteomics Bioinformatics ; 18(3): 289-304, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-33130100

RESUMO

Protein lysine methylation is a prevalent post-translational modification (PTM) and plays critical roles in all domains of life. However, its extent and function in photosynthetic organisms are still largely unknown. Cyanobacteria are a large group of prokaryotes that carry out oxygenic photosynthesis and are applied extensively in studies of photosynthetic mechanisms and environmental adaptation. Here we integrated propionylation of monomethylated proteins, enrichment of the modified peptides, and mass spectrometry (MS) analysis to identify monomethylated proteins in Synechocystis sp. PCC 6803 (Synechocystis). Overall, we identified 376 monomethylation sites in 270 proteins, with numerous monomethylated proteins participating in photosynthesis and carbon metabolism. We subsequently demonstrated that CpcM, a previously identified asparagine methyltransferase in Synechocystis, could catalyze lysine monomethylation of the potential aspartate aminotransferase Sll0480 both in vivo and in vitro and regulate the enzyme activity of Sll0480. The loss of CpcM led to decreases in the maximum quantum yield in primary photosystem II (PSII) and the efficiency of energy transfer during the photosynthetic reaction in Synechocystis. We report the first lysine monomethylome in a photosynthetic organism and present a critical database for functional analyses of monomethylation in cyanobacteria. The large number of monomethylated proteins and the identification of CpcM as the lysine methyltransferase in cyanobacteria suggest that reversible methylation may influence the metabolic process and photosynthesis in both cyanobacteria and plants.


Assuntos
Proteínas de Bactérias/metabolismo , Lisina/metabolismo , Metiltransferases/metabolismo , Fotossíntese , Processamento de Proteína Pós-Traducional , Synechocystis/enzimologia , Proteínas de Bactérias/química , Lisina/química , Metiltransferases/química , Synechocystis/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...